Senin, 01 Maret 2010

Angka Romawi Kuna

Belajar Nomor / Angka Romawi Kuno I V X L C D M - Pelajaran Matematika


Pada zaman dahulu kala orang romawi kuno menggunakan penomoran tersendiri yang sangat berbeda dengan sistem penomeran pada jaman seperti sekarang. Angka romawi hanya terdiri dari 7 nomor dengan simbol huruf tertentu di mana setiap huruf melangbangkan / memiliki arti angka tertentu, yaitu :

I / i untuk angka satu / 1
V / v untuk angka lima / 5
X / x untuk angka sepuluh / 10
L / l untuk angka lima puluh / 50
C / c untuk angka seratus / 100
D / d untuk angka lima ratus / 500
M / m untuk angka seribu / 1000

Beberapa kekurangan atau kelemahan sistem angka romawi, yakni :
1. Tidak ada angka nol / 0
2. Terlalu panjang untuk menyebut bilangan tertentu
3. Terbatas untuk bilangan-bilangan kecil saja

Untuk menutupi kekurangan angka romawi pada keterbatasan angka kecil, maka dibuat pengali seribu dengan simbol garis strip di atas simbol hurup (kecuali I).

V / v dengan garis di atas untuk angka lima ribu / 5000
X / x dengan garis di atas untuk angka sepuluh ribu / 10000
L / l dengan garis di atas untuk angka lima puluh ribu / 50000
C / c dengan garis di atas untuk angka seratus ribu / 100000
D / d dengan garis di atas untuk angka lima ratus ribu / 500000
M / m dengan garis di atas untuk angka satu juta / 1000000

Metode / Teknik Penomoran Angka Romawi :
1. Simbol ditulis dari yang paling besar ke yang paling kecil
2. Semua simbol besar ke kecil dijumlah kecuali kecil ke besar berarti ada pengurangan.

Contoh penulisan angka romawi kuno :
1. 16 = XVI
2. 35 = XXXV
3. 45 = XLV
4. 79 = LXXIX
5. 99 = IC
6. 110 = CX
7. 999 = CMXCIX
8. 1666 = MDCLXVI
9. 2008 = MMVIII

Aljabar (Algebra)

Aljabar (Algebra) adalah cabang matematika yang mempelajari struktur, hubungan dan kuantitas. Untuk mempelajari hal-hal ini dalam aljabar digunakan simbol (biasanya berupa huruf) untuk merepresentasikan bilangan secara umum sebagai sarana penyederhanaan dan alat bantu memecahkan masalah. Contohnya, x mewakili bilangan yang diketahui dan y bilangan yang ingin diketahui. Sehingga bila Andi mempunyai x buku dan kemudian Budi mempunyai 3 buku lebih banyak daripada Andi, maka dalam aljabar, buku Budi dapat ditulis sebagai y = x + 3. Dengan menggunakan aljabar, Anda dapat menyelidiki pola aturan aturan bilangan umumnya. Aljabar dapat diasumsikan dengan cara memandang benda dari atas, sehingga kita dapat menemukan pola umumnya.


Aljabar telah digunakan matematikawan sejak beberapa ribu tahun yang lalu. Sejarah mencatat penggunaan aljabar telah dilakukan bangsa Mesopotamia pada 3.500 tahun yang lalu. Nama Aljabar berasal dari kitab yang ditulis pada tahun 830 oleh Matematikawan Persia Muhammad ibn Musa al-Kwarizmi dengan judul ‘Al-Kitab al-Jabr wa-l-Muqabala’ (yang berarti "The Compendious Book on Calculation by Completion and Balancing"), yang menerapkan operasi simbolik untuk mencari solusi secara sistematik terhadap persamaan linier dan kuadratik. Salah satu muridnya, Omar Khayyam menerjemahkan hasil karya Al-Khwarizmi ke bahasa Eropa. Beberapa abad yang lalu, ilmuwan dan matematikawan Inggris, Isaac Newton (1642-17 27) menunjukkan, kelakuan sesuatu di alam dapat dijelaskan dengan aturan atau rumus matematika yang melibatkan aljabar, yang dikenal sebagai Rumus Gravitasi Newton.

Aljabar bersama-sama dengan Geometri, Analisis dan Teori Bilangan adalah cabang-cabang utama dalam Matematika. Aljabar Elementer merupakan bagian dari kurikulun dalam sekolah menengah dan menyediakan landasan bagi ide-ide dasar untuk Ajabar secara keseluruhan, meliputi sifat-sifat penambahan dan perkalian bilangan, konsep variabel, definisi polinom, faktorisasi dan menentukan akar pangkat.

Sekarang ini istilah Aljabar mempunyai makna lebih luas daripada sekedar Aljabar Elementer, yaitu meliputi Ajabar Abstrak, Aljabar Linier dan sebagainya. Seperti dijelaskan di atas dalam aljabar, kita tidak bekerja secara langsung dengan bilangan melainkan bekerja dengan menggunakan simbol, variabel dan elemen-elemen himpunan. Sebagai contoh Penambahan dan Perkalian dipandang sebagai operasi secara umum dan definisi ini menuju pada struktur bilangan seperti Grup, Ring, dan Medan (fields).

Asal Mula Aljabar

Asal mula Aljabar dapat ditelusuri berasal dari bangsa Babilonia Kuno yang mengembangkan sistem aritmatika yang cukup rumit, dengan hal ini mereka mampu menghitung dalam cara yang mirip dengan aljabar sekarang ini. Dengan menggunakan sistem ini, mereka mampu mengaplikasikan rumus dan menghitung solusi untuk nilai yang tak diketahui untuk kelas masalah yang biasanya dipecahkan dengan menggunakan persamaan Linier, Persamaan Kuadrat dan Persamaan Linier tak tentu. Sebaliknya, bangsa Mesir, dan kebanyakan bangsa India, Yunani, serta Cina dalam milenium pertama sebelum masehi, biasanya masih menggunakan metode geometri untuk memecahkan persamaan seperti ini, misalnya seperti yang disebutkan dalam ‘the Rhind Mathematical Papyrus’, ‘Sulba Sutras’, ‘Euclid's Elements’, dan ‘The Nine Chapters on the Mathematical Art’. Hasil karya bangsa Yunani dalam Geometri, yang tertulis dalam kitab Elemen, menyediakan kerangka berpikir untuk menggeneralisasi formula matematika di luar solusi khusus dari suatu permasalahan tertentu ke dalam sistem yang lebih umum untuk menyatakan dan memecahkan persamaan, yaitu kerangka berpikir logika Deduksi.

Seperti telah disinggung di atas istilah ‘Aljabar’ berasal dari kata arab "al-jabr" yang berasal dari kitab ‘Al-Kitab al-Jabr wa-l-Muqabala’ (yang berarti "The Compendious Book on Calculation by Completion and Balancing"), yang ditulis oleh Matematikawan Persia Muhammad ibn Musa al-Kwarizmi. Kata ‘Al-Jabr’ sendiri sebenarnya berarti penggabungan (reunion). Matematikawan Yunani di jaman Hellenisme, Diophantus, secara tradisional dikenal sebagai ‘Bapak Aljabar’, walaupun sampai sekarang masih diperdebatkan siapa sebenarnya yang berhak atas sebutan tersebut Al-Khwarizmi atau Diophantus?. Mereka yang mendukung Al-Khwarizmi menunjukkan fakta bahwa hasil karyanya pada prinsip reduksi masih digunakan sampai sekarang ini dan ia juga memberikan penjelasan yang rinci mengenai pemecahan persamaan kuadratik. Sedangkan mereka yang mendukung Diophantus menunjukkan Aljabar ditemukan dalam Al-Jabr adalah masih sangat elementer dibandingkan Aljabar yang ditemukan dalam ‘Arithmetica’, karya Diophantus. Matematikawan Persia yang lain, Omar Khayyam, membangun Aljabar Geometri dan menemukan bentuk umum geometri dari persamaan kubik. Matematikawan India Mahavira dan Bhaskara, serta Matematikawan Cina, Zhu Shijie, berhasil memecahkan berbagai macam persamaan kubik, kuartik, kuintik dan polinom tingkat tinggi lainnya.

Peristiwa lain yang penting adalah perkembangan lebih lanjut dari aljabar, terjadi pada pertengahan abad ke-16. Ide tentang determinan yang dikembangkan oleh Matematikawan Jepang Kowa Seki di abad 17, diikuti oleh Gottfried Leibniz sepuluh tahun kemudian, dengan tujuan untuk memecahkan Sistem Persamaan Linier secara simultan dengan menggunakan Matriks. Gabriel Cramer juga menyumbangkan hasil karyanya tentang Matriks dan Determinan di abad ke-18. Aljabar Abstrak dikembangkan pada abad ke-19, mula-mula berfokus pada teori Galois dan pada masalah keterkonstruksian (constructibility)

Tahap-tahap perkembangan Aljabar simbolik secara garis besar adalah sebagai berikut:

- Aljabar Retorik (Rhetorical algebra), yang dikembangkan oleh bangsa Babilonia dan masih mendominasi sampai dengan abad ke-16;

- Aljabar yang dikontruksi secara Geometri, yang dikembangkan oleh Matematikawan Vedic India dan Yunani Kuno;

- Syncopated algebra, yang dikembangkan oleh Diophantus dan dalam ‘the Bakhshali Manuscript’; dan

- Aljabar simbolik (Symbolic algebra), yang titik puncaknya adalah pada karya Leibniz.


Klasifikasi dari Aljabar

Aljabar secara garis besar dapat dibagi dalam kategori berikut ini:

1. Aljabar Elementer, yang mempelajari sifat-sifat operasi pada bilangan riil direkam dalam simbol sebagai konstanta dan variabel, dan Aturan yang membangun ekspresi dan persamaan Matematika yang melibatkan simbol-simbol.(bidang ini juga mencakup materi yang biasanya diajarkan di sekolah menengah yaitu ‘Intermediate Algebra’ dan ‘college algebra’);

2. Aljabar Abstrak, kadang-kadang disebut Aljabar Modern, yang mempelajari Struktur Aljabar semacam Grup, Ring dan Medan (fields) yang didefinisikan dan diajarkan secara aksiomatis;

3. Aljabar Linier, yang mempelajari sifat-sifat khusus dari Ruang Vektor (termasuk Matriks);

4. Aljabar Universal, yang mempelajari sifat-sifat bersama dari semua Struktur aljabar.

Dalam studi Aljabar lanjut, sistem aljabar aksiomatis semacam Grup, Ring, Medan dan Aljabar di atas sebuah Medan (algebras over a field) dipelajari bersama dengan telaah Struktur Geometri Natural yang kompatibel dengan Struktur Aljabar tersebut dalam bidang Topologi.

Aljabar Elementer

Aljabar Elementer adalah bentuk paling dasar dari Aljabar, yang diajarkan pada siswa yang belum mempunyai pengetahuan Matematika apapun selain daripada Aritmatika Dasar. Meskipun seperti dalam Aritmatika, di mana bilangan dan operasi Aritmatika (seperti +, −, ×, ÷) muncul juga dalam Aljabar, tetapi disini bilangan seringkali hanya dinotasikan dengan simbol (seperti a, x, y). Hal ini sangat penting sebab: Hal ini mengijinkan kita menurunkan rumus umum dari aturan Aritmatika (seperti a + b = b + a untuk semua a dan b), dan selanjutnya merupakan langkah pertama untuk penelusuran yang sistematik terhadap sifat-sifat sistem bilangan riil.

Dengan menggunakan simbol, alih-alih menggunakan bilangan secara langsung, mengijinkan kita untuk membangun persamaan matematika yang mengandung variabel yang tidak diketahui (sebagai contoh “Carilah bilangan x yang memenuhi persamaan 3x + 1 = 10"). Hal ini juga mengijinkan kita untuk membuat relasi fungsional dari rumus-rumus matematika tersebut (sebagai contoh "Jika anda menjual x tiket, dan kemudian anda mendapat untung 3x - 10 rupiah, dapat dituliskan sebagai f(x) = 3x - 10, dimana f adalah fungsi, dan x adalah bilangan dimana fungsi f bekerja.").

Rumus Deret Geometri

Deret Geometri adalah Penjumlahan anggota - anggota barisan geometri yang berurutan

deret geometri disimbolkan dengan Sn,
sehingga,
Sn = U1 + U2 + U3 + . . . + Un

karena Un = arn-1, maka
Sn = a + ar + ar2 + ar3 + . . . + arn-1

jika Sn dikalikan dengan r maka,
rSn = arn-1, maka
Sn = a + ar + ar2 + ar3 + . . . + arn-1 + arn

Selisih dari Sn - rSn = a - arn, atau
Sn(1-r) = a(1-rn) sehingga diperoleh Rumus Umum Deret Geometri

Sn = (a(1-rn))/(1-r), atau
Sn = (a(rn-1))/(r-1)

dengan Keterangan
n = Banyaknya suku
a= suku pertama
r = ratio

Rumus Bangun Datar

Rumus Bangun Datar - Matematika


Rumus Bujur Sangkar
Bujur sangkar adalah bangun datar yang memiliki empat buah sisi sama panjang
- Keliling : Panjang salah satu sisi dikali 4 (4S) (AB + BC + CD + DA)
- Luas : Sisi dikali sisi (S x S)

Rumus Persegi Panjang
Persegi panjang adalah bangun datar mirip bujur sangkar namun dua sisi yang berhadapan lebih pendek atau lebih panjang dari

dua sisi yang lain. Dua sisi yang panjang disebut panjang, sedangkan yang pendek disebut lebar.
- Keliling : Panjang tambah lebar kali 2 ((p+l)x2) (AB + BC + CD + DA)
- Luas : Panjang dikali lebar (pl)

Rumus Segitiga
- Keliling : Sisi pertama + sisi kedua + sisi ketiga (AB + BC + CA)
- Luas : Panjang alas dikali pangjang tinggi dibagi dua (a x t / 2)

Rumus Lingkaran
- Keliling : diameter dikali phi (d x phi) atau phi dikali 2 jari-jari (phi x (r + r)
- Luas : phi dikali jari-jari dikali jari-jari (phi x r x r)
- phi = 22/7 = 3,14

Rumus Jajar Genjang atau Jajaran Genjang
- Keliling : Penjumlahan dari keempat sisi yang ada (AB + BC + CD + DA)
- Luas : alas dikali tinggi (a x t)

Rumus Belah Ketupat
- Keliling : Penjumlahan dari keempat sisi yang ada (AB + BC + CD + DA)
- Luas : alas dikali panjang diagonal dibagi 2 (a x diagonal / 2)
- Diagonal : Garis tengah dua sisi berlawanan

Rumus Trapesium
- Keliling : Penjumlahan dari keempat sisi yang ada (AB + BC + CD + DA)
- Luas : Jumlah sisi sejajar dikali tinggi dibagi 2 ((AB + CD) / 2)

Bangun Ruang


Bangun ruang adalah bangun matematika yang mempunyai isi ataupun volume.

Bagian-bagian bangun ruang :
  1. Sisi: bidang pada bangun ruang yang membatasi antara bangun ruang dengan ruangan di sekitarnya.
  2. Rusuk: pertemuan dua sis yang berupa ruas garis pada bangun ruang.
  3. Titik sudut: titik hasil pertemuan rusuk yang berjumlah tiga atau lebih.
Jenis-jenis bangun ruang yang umum dikenal adalah:
  1. Balok
  2. Kubus
  3. Prisma
  4. Limas
  5. Kerucut
  6. Tabung dan
  7. Bola
  8. Rumus Kubus

Rumus Balok
- Volume : Panjang dikali lebar dikali tinggi (p x l x t)

- Volume : Sisi pertama dikali sisi kedua dikali sisi ketiga (S pangkat 3)

Rumus Bola
- Volume : phi dikali jari-jari dikali tinggi pangkat tiga kali 4/3 (4/3 x phi x r x t x t x t)
- Luas : phi dikali jari-jari kuadrat dikali empat (4 x phi x r x r)

Rumus Limas Segi Empat
- Volume : Panjang dikali lebar dikali tinggi dibagi tiga (p x l x t x 1/3)
- Luas : ((p + l) t) + (p x l)

Rumus Tabung
- Volume : phi dikali jari-jari dikali jari-jari dikali tinggi (phi x r2 x t)
- Luas : (phi x r x 2) x (t x r)

Rumus Kerucut
- Volume : phi dikali jari-jari dikali jari-jari dikali tinggi dibagi tiga (phi x r2 x t x 1/3)
- Luas : (phi x r) x (S x r)
- S : Sisi miring kerucut dari alas ke puncak (bukan tingi)

Rumus Prisma Segitiga Siku-siku
- Volume : alas segitiga kali tinggi segitiga kali tinggi prisma bagi dua (as x ts x tp x

Jumat, 29 Januari 2010

Hubungan/relasi dari himpunan A ke himpunan B adalah suatu pemasangan anggota-anggota A dengan anggota-anggota B.

A. SEBUAH RELASI R TERDIRI DARI:
  1. Himpunan A
  2. Himpunan B
  3. Sebuah kalimat terbuka P(x,y) yang menyatakan hubungan antara himpunan A dengan himpunan B.
    Dimana x bersesuaian dengan a Î A dengan y bersesuaian dengan b Î B.
    ® Bila P(a,b) betul maka a berelasi dengan b. Ditulis a R b
    ® Bila tidak demikian maka a R b
B. SEBUAH RELASI DAPAT DINYATAKAN DENGAN:
  1. Himpunan Pasangan Berurutan (a,b)
  2. Kalimat terbuka P(x,y)
  3. Diagram cartesius ( diagram A x B )

DOMAIN DAN RANGE

Domain (daerah asal) dari suatu relasi R adalah himpunan elemen pertama dari pasangan berurutan elemen R.

Domain = { a ½ a Î A, (a,b) Î R }

Range (daerah hasil) dari suatu relasi R adalah himpunan elemen kedua dari pasangan berurutan elemen R.

Range = {b ½ b Î B, (a,b) Î R}

contoh:

A = {1,2,3,4} ; B = {a,b,c}
R = {(2,a) ; (4,a) ; (4,c)}
Domain = {2,4}
Range = {a,c}


SPLDV (Persamaan Linear Dua variabel)

A. Pengertian SPLDV

Untuk memahami pengertian dan konsep dasar SPLDV, ada baiknya mengulang kembali materi tentang persamaan linear satu variabel. Pelajarilah uraian berikut secara saksama.

1. Persamaan Linear Satu Variabel

Di Kelas VII, kamu telah mempelajari materi tentang persamaan linear satu variabel. Masih ingatkah kamu apa yang dimaksud dengan persamaan linear satu variabel? Coba kamu perhatikan bentuk-bentuk persamaan berikut.

Bentuk-bentuk persamaan tersebut memiliki satu variabel yang belum diketahui nilainya. Bentuk persamaan seperti inilah yang dimaksud dengan linear satu variabel. Untuk lebih jelasnya, coba kamu perhatikan dan pelajari Contoh Soal 4.1 secara seksama.



Seperti yang telah dipelajari sebelumnya, untuk penyelesaian dari persamaan linear satu variabel dapat digunakan beberapa cara. Salah satu di antaranya dengan sifat kesamaan. Perhatikan uraian persamaan berikut.

Image:persamaan_5.jpg

Jadi, diperoleh nilai x = 4 dan himpunan penyelesaian, Hp = {4}. Untuk lebih jelasnya, coba kamu perhatikan dan pelajari Contoh Soal 4.2 berikut.



2. Persamaan Linear Dua Variabel

Kamu telah mempelajari dan memahami persamaan linear satu variabel. Materi tersebut akan membantu kamu untuk memahami persamaan linear dua variabel. Coba kamu perhatikan bentuk-bentuk persamaaan berikut.

Persamaan-persamaan tersebut memiliki dua variabel yang belum diketahui nilainya. Bentuk inilah yang dimaksud dengan persamaan linear dua variabel. Jadi, persamaan dua variabel adalah persamaan yang hanya memiliki dua variabel dan masing-masing variabel berpangkat satu. Untuk lebih jelasnya, coba kamu perhatikan dan pelajari Contoh Soal 4.3 berikut.

Image:persamaan_9.jpg

Image:persamaan_10.jpg

Image:persamaan_11.jpg

Image:persamaan_12.jpg

3. Sistem Persamaan Linear Dua Variabel

Coba kamu perhatikan bentuk-bentuk persamaan linear dua variabel berikut.

Dari uraian tersebut terlihat bahwa masing-masing memiliki dua buah persamaan linear dua variabel. Bentuk inilah yang dimaksud dengan Sistem Persamaan Linear Dua Variabel (SPLDV). Berbeda dengan persamaan dua variabel, SPLDV memiliki penyelesaian atau himpunan penyelesaian yang harus memenuhi kedua persamaan linear dua variabel tersebut. Contoh, perhatikan sistem SPLDV berikut.

Image:persamaan_14.jpg

Penyelesaian dari sistem persamaan linear adalah mencari nilai-nilai x dan y yang dic ari demikian sehingga memenuhi kedua persamaan linear. Perhatikan Tabel 4.1 berikut ini.

Tabel 4.1 menjelaskan bahwa persamaan linear 2x + y = 6 memiliki 4 buah penyelesaian. Adapun persamaan linear x + y = 5 memiliki 6 buah penyelesaian. Manakah yang merupakan penyelesaian dari 2 x + y = 6 dan x + y = 5? Penyelesaian adalah nilai x dan y yang memenuhi kedua persamaan linear tersebut. Perhatikan dari Tabel 4. 1 nilai x = 1 dan y = 4 sama-sama
memenuhi penyelesaian dari kedua persamaan linear tersebut. Jadi, dapat dituliskan:

Image:persamaan_16.jpg

Image:persamaan_17.jpg

Image:persamaan_18.jpg

B. Penyelesaian SPLDV

Seperti yang telah dipelajari sebelumnya, SPLDV adalah persamaan yang memiliki dua buah persamaan linear dua variabel. Penyelesaian SPLDV dapat ditentukan dengan cara mencari nilai variabel yang memenuhi kedua persamaan linear dua variabel tersebut. Pada subbab sebelumnya, kamu telah mempelajari bagaimana cara menentukan penyelesaian suatu SPLDV dengan menggunakan tabel, namun cara seperti itu membutuhkan waktu yang cukup lama. Untuk itu, ada beberapa
metode yang dapat digunakan untuk menentukan penyelesaian SPLDV.
Metode-metode tersebut adalah:

1. Metode Grafik
2. Metode Substitusi
3. Metode Eliminasi

Pelajarilah uraian mengenai metode-metode tersebut pada bagian berikut ini.

1. Metode Grafik

Grafik untuk persamaan linear dua variabel berbentuk garis lurus. Bagaimana dengan SPLDV? Ingat, SPLDV terdiri atas dua buah persamaan dua variabel, berarti SPLDV digambarkan berupa dua buah garis lurus. Penyelesaian dapat ditentukan dengan menentukan titik potong kedua garis lurus tersebut. Untuk lebih jelasnya, coba perhatikan dan pelajari Contoh Soal 4.6 dan Contoh Soal 4.7

Image:persamaan_19.jpg

Image:persamaan_20.jpg

Image:persamaan_21.jpg


2. Metode Substitusi

Penyelesaian SPLDV menggunakan metode substitusi dilakukan dengan cara menyatakan salah satu variabel dalam bentuk variabel yang lain kemudian nilai variabel tersebut menggantikan variabel yang sama dalam persamaan yang lain. Adapun langkah-langkah yang dapat dilakukan untuk menentukan penyelesaian SPLDV dengan menggunakan metode substitusi dapat kamu pelajari dalam Contoh Soal 4.8 dan Contoh Soal 4.9

Image:persamaan_22.jpg

Image:persamaan_23.jpg


3. Metode Eliminasi

Berbeda dengan metode substitusi yang mengganti variabel, metode eliminasi justru menghilangkan salah satu variabel untuk dapat menentukan nilai variabel yang lain. Dengan demikian, koefisien salah satu variabel yang akan dihilangkan haruslah sama atau dibuat sama. Untuk lebih jelasnya, coba kamu perhatikan dan pelajari Contoh Soal 4.10 dan Contoh Soal 4.11

Image:persamaan_24.jpg

Image:persamaan_25.jpg

C. Penerapan SPLDV

Dalam kehidupan sehari-hari, banyak sekali permasalahan-permasalahan yang dapat dipecahkan menggunakan SPLDV. Pada umumnya, permasalahan tersebut berkaitan dengan masalah aritmetika sosial. Misalnya, menentukan harga satuan barang, menentukan panjang atau lebar sebidang tanah, dan lain sebagainya. Agar kamu lebih memahami, perhatikan dan pelajari
contoh-contoh soal berikut.

Image:persamaan_26.jpg

Image:persamaan_27.jpg

Image:persamaan_28.jpg

Image:persamaan_29.jpg